Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • SDID (Synthetic Difference-In-Difference) | methods Criteria

    I am performing a diff-in-diff analysis using Clarke and Palanir's sdid command.
    My question is whether there is a, objective way to choose among available methods ( sdid, did,sc) as I was not able to capture the answer from https://www.damianclarke.net/research/papers/SDID.pdf

    Note: In "did" method ATT matches xtdidregress, as expected, rejecting Null Hyphotesis however, in "sdid" method, ATT becomes significant.

    thanks


    Code:
    . xtset S T, weekly 
    
    Panel variable: S (strongly balanced)
     Time variable: T, 2023w15 to 2023w37
             Delta: 1 week
    
    
    . sdid Y S T D,vce(bootstrap) method(sc)
    Bootstrap replications (50). This may take some time.
    ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
    ..................................................     50
    
    
    Synthetic Control
    
    -----------------------------------------------------------------------------
               Y |     ATT     Std. Err.     t      P>|t|    [95% Conf. Interval]
    -------------+---------------------------------------------------------------
               D |  44.76957   35.05688     1.28    0.202   -23.94065   113.47979
    -----------------------------------------------------------------------------
    95% CIs and p-values are based on Large-Sample approximations.
    Code:
    . sdid Y S T D,vce(bootstrap) method(sdid)
    Bootstrap replications (50). This may take some time.
    ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
    ..................................................     50
    
    
    Synthetic Difference-in-Differences Estimator
    
    -----------------------------------------------------------------------------
               Y |     ATT     Std. Err.     t      P>|t|    [95% Conf. Interval]
    -------------+---------------------------------------------------------------
               D |  54.69791   28.26938     1.93    0.053    -0.70906   110.10488
    -----------------------------------------------------------------------------
    95% CIs and p-values are based on Large-Sample approximations.
    Refer to Arkhangelsky et al., (2020) for theoretical derivations.
    Code:
    . sdid Y S T D,vce(bootstrap) method(did) 
    Bootstrap replications (50). This may take some time.
    ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
    ..................................................     50
    
    
    Difference-in-Differences Estimator
    
    -----------------------------------------------------------------------------
               Y |     ATT     Std. Err.     t      P>|t|    [95% Conf. Interval]
    -------------+---------------------------------------------------------------
               D |  30.46574   26.07602     1.17    0.243   -20.64232    81.57380
    -----------------------------------------------------------------------------
    95% CIs and p-values are based on Large-Sample approximations.
    
    
    . xtdidregress (Y) (D), group(S) time(T)
    
    Treatment and time information
    
    Time variable: T
    Control:       D = 0
    Treatment:     D = 1
    -----------------------------------
                 |   Control  Treatment
    -------------+---------------------
    Group        |
               S |        90          6
    -------------+---------------------
    Time         |
         Minimum |      3290       3305
         Maximum |      3290       3305
    -----------------------------------
    
    Difference-in-differences regression                     Number of obs = 2,208
    Data type: Longitudinal
    
                                         (Std. err. adjusted for 96 clusters in S)
    ------------------------------------------------------------------------------
                 |               Robust
               Y | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
    ATET         |
               D |
       (1 vs 0)  |   30.46574   21.26164     1.43   0.155    -11.74395    72.67543
    ------------------------------------------------------------------------------
    Note: ATET estimate adjusted for panel effects and time effects.

  • #2
    It all hinges on how well parallel trends holds and/or if it's reasonable for a convex combination of donors to match outcome pretrends and the underlying factor structure.

    Comment


    • #3
      thanks Jared, for the theoretical guidance.

      Comment

      Working...
      X